انجام پروژه های پردازش زبان طبیعی nlp

انجام پروژه های پردازش زبان طبیعی سفارش خود را می توانید از طریق شماره تماس 09367292276 یا ایمیل آدرس azsoftir@gmail.com

انجام پروژه های پردازش زبان طبیعی nlp

انجام پروژه های پردازش زبان طبیعی سفارش خود را می توانید از طریق شماره تماس 09367292276 یا ایمیل آدرس azsoftir@gmail.com

انجام پروژه های nlp

پردازش زبان‌های طبیعی یکی از زیرشاخه‌های بااهمیت در حوزهٔ گستردهٔ علوم رایانه، هوش مصنوعی، که به تعامل بین کامپیوتر و زبان‌های (طبیعی) انسانی می‌پردازد؛ بنا بر این پردازش زبان‌های طبیعی بر ارتباط انسان و رایانه، متمرکز است. پس چالش اصلی و عمده در این زمینه درک زبان طبیعی و ماشینی کردن فرایند درک و برداشت مفاهیم بیان‌شده با یک زبان طبیعیِ انسانی است. به تعریف دقیق‌تر، پردازش زبان‌های طبیعی عبارت است از استفاده از رایانه برای پردازش زبان گفتاری و زبان نوشتاری. بدین معنی که رایانه‌ها را قادر سازیم که گفتار یا نوشتار تولید شده در قالب و ساختار یک زبان طبیعی را تحلیل و درک نموده یا آن را تولید نمایند. در این صورت، با استفاده از آن می‌توان به ترجمهٔ زبان‌ها پرداخت، از صفحات وب و بانک‌های اطلاعاتیِ نوشتاری جهت پاسخ دادن به پرسش‌ها استفاده کرد، یا با دستگاه‌ها، مثلاً برای مشورت گرفتن به گفت‌وگو پرداخت.[۱] این‌ها تنها مثال‌هایی از کاربردهای متنوع پردازش زبان‌های طبیعی هستند
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
هدف اصلی در پردازش زبان طبیعی، ایجاد تئوری‌هایی محاسباتی از زبان، با استفاده از الگوریتم‌ها و ساختارهای داده‌ای موجود در علوم رایانه است. بدیهی است که در راستای تحقق این هدف، نیاز به دانشی وسیع از زبان است و علاوه بر محققان علوم رایانه، نیاز به دانش زبان شناسان نیز در این حوزه می‌باشد. با پردازش اطلاعات زبانی می‌توان آمار مورد نیاز برای کار با زبان طبیعی را استخراج کرد. کاربردهای پردازش زبان طبیعی به دو دسته کلی قابل تقسیم است: کاربردهای نوشتاری و کاربردهای گفتاری. از کاربردهای نوشتاری آن می‌توان به استخراج اطلاعاتی خاص از یک متن، ترجمه یک متن به زبانی دیگر یا یافتن مستنداتی خاص در یک پایگاه داده نوشتاری (مثلاً یافتن کتاب‌های مرتبط به هم در یک کتابخانه) اشاره کرد. نمونه‌هایی از کاربردهای گفتاری پردازش زبان عبارتند از: سیستم‌های پرسش و پاسخ انسان با رایانه، سرویس‌های اتوماتیک ارتباط با مشتری از طریق تلفن، سیستم‌های آموزش به فراگیران یا سیستم‌های کنترلی توسط صدا. در سالهای اخیر این حوزه تحقیقاتی توجه دانشمندان را به خود جلب کرده‌است و تحقیقات قابل ملاحظه‌ای در این زمینه صورت گرفته‌است.
یادگیری ماشین

توسعه دهندگان هوش مصنوعی ما از یادگیری ماشین برای ایجاد راهکارهای هوش مصنوعی که قابلیت جمع آوری داده های بدون ساختار و تبدیل آن به روندهای کاربردی را دارند برای رشد کسب و کار استفاده میکنند
دستیار صوتی
، یکی از خدمات قابل ارائه توسط توسعه دهندگان هوش مصنوعی ما ایجاد دستیارهای صوتی با استفاده از NLP و تشخیص گفتار است. دستیار صوتی به افزایش آگاهی از برند شما کمک کرده و بهره وری را از طریق جستجوی صوتی بهبود میبخشد.
هوش تجاری

مهندسان هوش مصنوعی در گروه هلدینگ تجارت 20 ، استراتژی هایی تدوین و پیاده سازی میکنند که امکان بهینه سازی آنالیز مشتریان ، پیش بینی و تحلیل عملکرد را فراهم نمایند.
توسعه چت بات   
توسعه چت بات

خدمات توسعه چت بات توسط ما، بسیار نزدیک به رفتارهای انسانی میباشد. تیم توسعه نرم افزار هوش مصنوعی ما، ربات هایی برایتان توسعه خواهند داد که تعاملات شخصی سازی شده را آسان تر نموده و منجر به افزایش وفاداری و بازگشت مشتری خواهند شد.
پردازش زبان طبیعی   
پردازش زبان طبیعی

توسعه دهندگان ما با استفاده از NLP و NLU، میتوانند به سازمان ها کمک کنند تا بازخورد و احساسات مشتریان را ارزیابی نمایند که در نهایت، موجب افزایش تعامل مشتریان و درآمد کسب و کار میشود.
بینایی کامپیوتر   
بینایی کامپیوتر

متخصصان توسعه نرم افزارهای هوش مصنوعی در گروه هلدینگ تجارت 20 ، تجربه فراوانی در توسعه راهکارهایی برای شناخت آبجکت ها و دسته بندی تصاویر با استفاده از جستجوی تصویری مبتنی بر یادگیری عمیق دارند.
پروژه هوش مصنوعی   
سفارش پروژه هوش مصنوعی در شرکت معتبر
هوش مصنوعی   
تحول فرآیندهای کاری با استفاده از قابلیت های هوش مصنوعی

ایده های هوش مصنوعی شما را با تجربه و دانش چندین ساله خود، در قالب پروژه های بینایی کامپیوتر، یادگیری عمیق، یادگیری ماشین و زبان پردازش طبیعی به واقعیت تبدیل میکنیم. تیم ما آماده همکاری با کسب و کارهای کوچک و بزرگ جهت دریافت سفارش پروژه هوش مصنوعی، توسعه هوش مصنوعی، ارائه خدمات مشاوره هوش مصنوعی و نیز، آموزش هوش مصنوعی میباشد.

 توسعه هوش مصنوعی گروه هلدینگ تجارت 20 ، یک از گروه های معتبر تبلیغات کسب و کارها ، متشکل از تحلیلگران هوش مصنوعی، طراحان، توسعه دهندگان فول استک و معماران نرم افزار حرفه ای میباشد.

فرآیند توسعه هوش مصنوعی
ارزیابی پروژه

پس از ثبت سفارش پروژه هوش مصنوعی توسط شما، این موضوع را مشخص میکنیم که آیا ایده شما نیاز به توسعه راهکارهای مبتنی بر هوش مصنوعی دارد یا نه. در صورت نیاز، یک نقشه مسیر مبتنی بر نیازهای شما مشخص میکنیم.
آماده سازی پروژه اولیه   
آماده سازی پروژه اولیه

پس از آماده سازی اطلاعات، ارزیابی ها و اصلاحات آن را تا زمان کسب نتایج قابل قبول ادامه میدهیم. پس از کسب نتیجه دلخواه، فاز اولیه پروژه کسب و کار شما را اجرا میکنیم. هدف از اجرای پروژه در این مرحله، شناسایی گپ موجود بین مشکلات موجود و قابلیت های پروژه است.
گردآوری اطلاعات   
گردآوری اطلاعات پروژه

احتمالا شما به برخی داده ها جهت تحلیل دسترسی دارید. در غیر اینصورت، تیم ما داده های مورد نیاز را از منابع آنلاین جمع آوری مینماید. سپس این داده ها را برای تعیین الگوها و روابط معنادار که مرتبط با نیازهای شما باشند، پردازش میکنیم.
توسعه و پیاده سازی   
توسعه و پیاده سازی پروژه

پس از کسب اطمینان از حل مسائل و نیازهای کسب و کار توسط پروژه برنامه ریزی شده، سفارش پروژه هوش مصنوعی شما وارد فاز اجرایی خواهد شد.
پردازش زبان طبیعی NLP توسط آنتولوژی

وظیفه آنتولوژی فراهم آوردن محتوای معنایی می باشد
شناسایی موجودیت ها در متن ساخت نیافته تمام کاری که باید انجام دهیم نیست .مدل‌های آنتولوژی با نمایش این که چگونه موجودیت ها به سایر موجودیت ها (چه در همان متن و چه در یک حوزه کلی ) مرتبط می شوند ساختار را تکمیل می کنند.

همانطور که در تصویر بالا مشاهده می کنید این عبارت علامت گذاری شده است و کمان هایی به رنگ قرمز در تصویر مشخص می باشد. ما فقط دو کلمه را در این متن علامت گذاری کرده ایم. ویلیام شکسپیر به عنوان یک نمایشنامه نویس و هملت به عنوان یک نمایش نامه.اما به عمق دانشی که در این متن داریم توجه کنید.در این تصویر ما یک مدل را رسم کرده ایم .طبق تصویر مشخص است که ۶ عدد علامت گذاری توسط کمان ها صورت گرفته است .این علامت گذاری ها توسط موتور NLP صورت گرفته است و مدل سازی شده است.این مدل سازی درون یک آنتولوژی انجام شده است. در واقع ما توسط هستان شناسی می‌فهمیم که چگونه یک کتاب(Book) با یک تاریخ (Date) یا یک زبان (Language) و همچنین یک زبان با یک کشور(Country)  و آن هم با یک نویسنده(Author) و غیره مرتبط است .هر کدام از علامت گذاری ها توسط یک دیکشنری پشتیبانی می شود داده های این دیکشنری در خارج از حیطه آنتولوژی مربوطه ساخته شده است.آنتولوژی فقط ارتباطات بین علامت گذاری ها با یکدیگر را نمایش می دهد .علامت گذاری ویلیام شکسپیر به عنوان یک نویسنده یک ساختار سه تایی ضمنی محسوب می شود :
ویلیام شکسپیر یک نویسنده است
گذار به داده های ساخت یافته (استخراج سه تایی ها)

هم اکنون ما در ابتدای مرحله انتقال از حالت ساخت نیافته به قلمرو داده‌های ساخت‌یافته می باشیم اگر بدانیم که ویلیام شکسپیر یک نویسنده است همچنین می دانیم که هر نویسنده در کشوری زندگی می کند و همچنین نویسنده ها کتاب هایی را می نویسند که در تاریخ های مشخصی منتشر می شود و به زبان مشخصی هم نوشته شده است و غیره.
یک زنجیره معنایی کامل از اطلاعات داریم که می‌توانند از این عبارت استخراج شود و نکته اصلی همین جاست .علاوه بر این هستی شناسی به ما کمک می‌کند تا بفهمیم چه داده هایی را نداریم .اگر موتور NLP بتواند نویسنده و عنوان را تشخیص دهد چه چیزی را تشخیص نداده است؟

به نظر می رسد که همه کتاب ها در در یک تاریخ معینی انتشار می یابند بنابراین به دنبال این تاریخ بگردیم همچنین به نظر می رسد که در موضوع نوشتن کتاب یک زبان هم مطرح است بنابراین می‌توانیم آن را هم بیابیم .به طور خلاصه آنتولوژی ارتباطاتی را که بین موجودیت ها یا علامت گذاری ها وجود دارد را به ما میدهد .آنتولوژی به ما کمک می‌کند که هر علامت گذاری را در یک حوزه وسیع تر ( حوزه زنجیره معنایی و شبکه معنایی) داشته باشیم. همچنی
سرفصل‌های دوره دوره آموزش پردازش زبان طبیعی NLP
فیلم های آموزشی
11:21 ساعت (شامل 11:21 ساعت محتوای آموزشی)
15 جلسه
جلسه اول - مقدمات
"30:20
جلسه دوم - پیش پردازش متن و عبارات منظم
"68:43
جلسه سوم - فاصله ویرایشی
"67:21
جلسه چهارم -چندتایی ها
"49:31
جلسه پنجم - طبقه بندی متون
"57:16
جلسه ششم - طبقه بندی متون
"40:45
جلسه هفتم - تصحیح خطاهای املایی
"56:21
جلسه هشتم - معانی و روابط کلمات
"49:55
جلسه نهم - معانی و روابط کلمات
"51:04
جلسه دهم - تحلیل احساس
"50:01
جلسه یازدهم - تحلیل احساس
"45:44
جلسه دوازدهم - استخراج اطلاعات
"20:08
جلسه سیزدهم -برچسب گذاری کلمات
"23:04
جلسه چهاردهم - استخراج روابط از متن
"48:24
جلسه پانزدهم - پارسینگ
"22:47
نظرات (2 نظر)
دوره آموزش پردازش زبان طبیعی در 15 جلسه ارائه خواهد شد که شامل سرفصل‌های زیر است:

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


    جلسه اول - مقدمات
    جلسه دوم - پیش‌پردازش متن و عبارات منظم
    جلسه سوم - فاصله ویرایشی
    جلسه چهارم -چندتایی‌ها
    جلسه پنجم - طبقه‌بندی متون
    جلسه ششم - طبقه‌بندی متون
    جلسه هفتم - تصحیح خطاهای املایی
    جلسه هشتم - معانی و روابط کلمات
    جلسه نهم - معانی و روابط کلمات
    جلسه دهم - تحلیل احساس
    جلسه یازدهم - تحلیل احساس
    جلسه دوازدهم - استخراج اطلاعات
    جلسه سیزدهم -برچسب‌گذاری کلمات
    جلسه چهاردهم - استخراج روابط از متن
    جلسه پانزدهم – پارسینگ

با استفاده از دوره آموزش پردازش زبان طبیعی و یادگیری آن می‌توانید به پیاده‌سازی پروژه‌های مختلف و شخصی خود در حوزه پردازش زبان فارسی، انگلیسی و بسیاری از زبان‌های دیگر بپردازید و اهداف گوناگونی را برای خود با یادگیری آن دنبال کنید که این اهداف توانایی تبدیل‌شدن به یک پروژه بزرگ را می‌توانند داشته باشند. مقدماتی(50 ساعت):

    پیش زمینه
    کاربردها
    تفاوتهای پردازش زبان طبیعی با دیگر حوزه های مشاب
    ابزارهای پایه ای زبان انگلیسی
    ابزارهای پایه های زبان فارسی
    ابزار Stanford-nlp
    مرور ابزارهای پیشرفته پردازش زبان طبیعی
    پیش پردازش ها
    ریشه یابی کلمات
    چندی سازی متن
    الگوریتم های حوزه تحلیل لغوی
    N-gram (BOW, CBOW, TF-IDF, SVD, LDA)
    Word Embedding(Context Independent)
    Word Embedding(Context dependent)
    شباهت سنجی متنی
    POS tag parser
    ترجمه ماشینی
    Named-Entity Recognition
    Word-Sense Disambiguation
    MultiModal
    Attention Mechanism

پردازش زبان طبیعی پیشرفته (40 ساعت):

    Attention and self-attention mechanisms
    Bert Model
    ALBERT, Roberta
    Knowledge Distillation
    Multilingual Models
    Zero-Shot Learning
    Multi-Modal Models Introduction
    Image Captioning
    Video Captioning
    Multi-Modal models review
    Question Answering Models
    Dialogue پردازش زبان طبیعی (NLP) یک شاخه از علوم است که به پردازش هوشمند زبان طبیعی ، یعنی همان زبانی که ما انسانها با ان صحبت  میکنیم، مرتبط است. زبان طبیعی برخلاف زبانهای برنامه نویسی که دارای ساختار و معنای کاملا مشخصی است، از پیچیدگیهای زیادی در تحلیل و فهم آن توسط کامپیوتر برخوردار است.

 

شاخه های تحقیقات این آزمایشگاه شامل پردازشهای هوشمند زبان طبیعی و ارائه برنامه های کاربردی مرتبط با تکنولوژی زبان است که شامل ارائه سیستمهای خطایاب املایی و دستوری، ارائه سیستم های مترجم هوشمند متون، خلاصه سازی، متن کاوی، تجزیه نحوی و ... است. عموما این تحقیقات روی زبان فارسی تمرکز دارد.

معمولا تحقیقات مذکور با استفاده از روشهای یادگیری هوشمند و استفاده از هوش مصنوعی استوار است. این آزمایشگاه همواره سعی میکند که ارتباط مناسبی با برنامه های کاربردی و صنعتی داشته باشد.

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


 
کارگاه‌های دوره‌ای با موضوع «راهکارهای پردازش متن برای زبان‌های کم-منبع»


اولین دوره این کارگاه همزمان با برگزاری سومین دوره کنفرانس ICNLSP تحت عنوان «راهکارهای پردازش متن برای زبان‌های کمتر توسعه‌یافته» در سال ۱۳۹۸ تشکیل شد که هدف از این کارگاه پرداختن به زبان‌های کمتر توسعه‌یافته، معطوف کردن تحقیقات به سمت چالش‌های این زبان‌ها و تشویق محققین برای همکاری و توسعه پژوهش‌ها در راستای تولید منابع و ابزارهای پردازشی برای این زبان‌ها است. از آن جا که زبان فارسی نیز در زمینه منابع داده‌ای و ابزارهای پردازشی پایه‌ای جز زبان‌های کمترتوسعه‌یافته محسوب می‌شود، در این کارگاه چندین مسابقه در زمینه تولید ابزارهای پردازش پایه‌ای در زبان فارسی در قالب مساله مشترک (shared task) بین تیم‌های شرکت‌کننده برگزار می‌شود. ادامه مطلب
محصولات و دستاوردها
آزمایشگاه پردازش متن و زبان طبیعی
«فرازین» دانشگاه تهران بهتر از گوگل ترجمه می‌کند

پژوهشگران و دانشجویان آزمایشگاه پردازش متن و زبان‌های طبیعی دانشگاه تهران موفق به ساخت یک مترجم هوشمند خودکار برای ترجمه متون فارسی و انگلیسی به یکدیگر شدند.
درخت بانک دانشگاه تهران
درخت بانک دانشگاه تهران

درخت‌بانک مجموعه‌ای از جملات است که براساس یک یا چند نظریه زبانی تجزیه شده­ است. این پروژه در دو نسخه دسکتاپ و همچنین وب سرویس در اختیار دانش‌پژوهان قرار گرفته است. دادگان تولید شده پروژه بر روی تجزیه‌گرهای نحوی انتشار یافته است.
موجودیت های اسمی دانشگاه تهران
موجودیت های اسمی دانشگاه تهران

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


تشخیص موجودیت‌های اسمی که یکی از حوزه‌های پژوهشی پردازش زبان طبیعی و بازیابی اطلاعات محسوب می‌شود، به روش‌هایی می‌پردازد که شناسایی موجودیت‌های اسمی را در متون ممکن می‌سازد.
فرازین بار

فرازین­‎بار یک ابزار پس­‎ویرایش تعاملی، برون­‎خط و با دسترسی آزاد است که می‎­تواند به مترجم­‎های ماشینی مختلف متصل شود. این ابزار به صورت یک افزونه برای محیط Microsoft Wordطراحی شده است.
سوالات طرح‌شده از موضوعات بسیار داغ درحوزه‌ی تکنولوژی و هوش مصنوعی هستند. تصور کنید ماشین (نرم‌افزار) بتواند دقیقا و کاملا زبان انگلیسی یا فارسی یا فرانسه یا هر زبان دیگری را بفهمد؟ اگر کمی به دوروبر خودمان دقت کنیم، شاید ماشین‌هایی را که زبان ما را می‌فهمند و با ما حرف می‌زنند پیدا کنیم.

اگرشما گوشی آیفون داشته باشید، حتما با سیری (Siri) آشنا هستید. من دوستی دارم که از سیری می‌خواهد برایش جک تعریف کند. او سیری را دوست خودش می‌داند. البته، هنوز سیری نمی‌تواند کاملا همه‌ی حرف‌های او را مثل یک انسان بفهمد و درک کند؛ چون زبان ما آدم‌ها بیش‌از آنچه فکر می‌کنیم پیچیده است. ولی مهم نیست. سیری این قدرت را دارد که از معاشرت و تعامل با دوست من یاد بگیرد و بهتر شود.

یاددادن زبان انسان‌ها به ماشین‌ها کاربردهای زیادی دارد، سیری فقط یک نمونه‌ی کوچک آن است. با‌استفاده‌از هوش مصنوعی ربات‌های انسان‌نما ساخته شده است. ربات‌هایی که می‌توانند به سوالات خبرنگاران جواب بدهند! بدون پردازش زبان طبیعی و پیشرفت در آن رشته‌ نمی‌شد ربات‌های انسان‌نما را، که درآینده‌ای نه‌چندان دور بخش لاینفک زندگی ما انسان‌ها خواهند بود، ساخت .

در این مقاله می‌خواهم شما را با یکی‌از جالب‌ترین و درعین‌حال پردرآمدترین زیرشاخه‌های هوش مصنوعی (یعنی NLP) آشنا کنم و به سوالاتی که این مطلب با آن‌ها شروع شد، پاسخ دهم.

 

آنچه در این نوشته خواهیم داشت

    پردازش زبان طبیعی چیست؟
        چطور پایتون و ماشین لرنینگ زبان طبیعی را پردازش می‌کنند؟
            مراحل پردازش زبان طبیعی
                ۱. Data Preprocessing
                ۲. Algorithm Development
            تکنولوژی‌های پردازش زبان طبیعی
            کتابخانه‌های پایتون برای پردازش زبان طبیعی
        چرا پردازش زبان طبیعی مهم است؟
            مهم‌ترین کاربردهای NLP
        متخصص NLP کیست؟
        درآمد و بازار کار مهندس پردازش زبان طبیعی در ایران و جهان چطور است؟
        جمع‌بندی و نتیجه‌گیری
            نویسنده
                مهدیه اسماعیلی

پردازش زبان طبیعی چیست؟

زبان طبیعی زبانی است که انسان‌ها با آن بایکدیگر ارتباط، کلامی و نوشتاری، برقرار می‌کنند. انسان‌ها با زبان طبیعی مقصود خود را به دیگران منتقل می‌کنند. من الان با زبان طبیعی این متن را برای شما نوشتم. دقت کنید که مراد‌از زبان طبیعی یک زبان خاص، مثل انگلیسی یا فارسی، نیست. زبانی که مجموعه‌ای از کلمات و اصطلاحات است و قواعد (دستور زبان یا گرامر) مشخصی دارد. زبان طبیعی، زبان انسان، ویژگی‌های دیگری هم دارد.

از مهم‌‌ترین ویژگی‌های زبان طبیعی پویایی آن است. درگذر‌زمان زبان تغییر می‌کند. کلمات و اصطلاحات جدید به زبان وارد می‌شود و برخی کلمات بعد‌ازمدتی در مکالمات یا متن‌ها به‌کار گرفته نمی‌شوند. انسان‌ها زبان را یاد می‌گیرند. من و شما اول از پدر و مادر و محیط و بعد در مدسه زبان را یاد گرفتیم. نوشتن هر زبانی قواعد خاص خودش را دارد. نوشتن و درک‌کردن هر متنی (علمی، نمایشنامه، نقد، رمان، داستان کوتاه، بررسی محصول و …) نیز قواعد و کلمات و اصطلاحات خاص خودش را دارد. پس، زبان طبیعی را نه‌تنها باید یاد گرفت؛ بلکه باید مطالعه کرد.

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


زبان‌شناسی (Linguistic) علمی است که زبان طبیعی را مطالعه و بررسی می‌کند. زبان‌شناسی زیرشاخه‌های متعددی دارد. یکی‌از زیرشاخه‌های میان‌رشته‌ای آن زبان‌شناسی محاسباتی یا رایانشی (Computational Linguistic) است. در زبان‌شناسی رایانشی، متخصصان به‌دنبال یافتن الگوهای کامپیوتری (مدل‌‌های کامپیوتری) برای زبان طبیعی هستند. پردازش زبان طبیعی زیرشاخه‌ی میان‌رشته‌ای دیگری از زبان‌شناسی است که در آن متخصصان ۳ حوزه‌ی زبان‌شناسی، علوم کامپیوتر و هوش مصنوعی به‌دنبال یافتن راهی برای تعامل انسان و ماشین به‌وسیله‌‌ی زبان طبیعی انسان هستند.

 

    NLP enables computers to understand natural language as humans do.

    پردازش زبان طبیعی کامپیوترها را قادر می‌سازد تا زبان طبیعی را همان‌طور که انسان‌ها می‌فهمند، بفهمند.

 

 

nlp چیست

 
چطور پایتون و ماشین لرنینگ زبان طبیعی را پردازش می‌کنند؟

شاید بشود ادعا کرد که در این جهان تا قبل‌از هوش مصنوعی و زبان قدرتمند پایتون و ماشین لرنینگ، انسان‌ها بودند که فقط می‌توانستند زبان طبیعی را یاد بگیرند و بفهمند. اما الان ماشین لرنینگ و دیپ لرنینگ به موجود غیرزنده‌ای، یک الگوریتم، امکان یادگیری زبان طبیعی را داده است. در فرآیند پردازش زبان طبیعی در ۲ مرحله و بااستفاده‌از تکنولوژی‌‌هایی به کامپیوتر یاد داده می‌شود تا داده‌ را، که ممکن است متن یا کلام باشد، دریافت و پردازش کند تا آن را بفهمد و خروجی خواسته‌شده را (که ممکن است پاسخ، تحلیل یا هر جزئیات دیگری از متن یا کلام باشد) تحویل دهد.

 
مراحل پردازش زبان طبیعی
۱. Data Preprocessing

NLP با یک Unstructured text شروع می‌شود. قبل‌از یاددادن زبان طبیعی به ماشین (الگوریتم) باید زبان طبیعی را، یعنی متن یا صوتی که قرار است ماشین آن را بفهمد و ابتدا با الگوریتم‌ speech to text به متن تبدیل شده، به زبان ماشین یعنی Structured text تغییر داد. داده‌ای (Input) که دراختیار ماشین قرار می‌گیرد باید در قالبی باشد که ماشین بتواند آن را پردازش کند.
۲. Algorithm Development

پردازش زبان طبیعی را الگوریتم‌ها انجام می‌دهند. پس، باید الگوریتم پردازش‌گر را براساس قواعدی ساخت و برای او معین کرد که چطور کار پردازش را انجام دهد. اینجاست که هوش مصنوعی و زیرشاخه‌های آن، یعنی ماشین لرنینگ و دیپ لرنینگ، به متخصصان پردازش زبان طبیعی کمک می‌کنند تا به الگوریتم آموزش دهند.

 
تکنولوژی‌های پردازش زبان طبیعی

مهندسان پردازش زبان طبیعی مراحل ذکرشده را بابه‌کارگرفتن تکنولوژ‌ی‌ها، تکنیک‌‌ها و ابزارهای مختلفی انجام می‌دهند. برای ساختار‌دادن به داده و همچنین آموزش‌دادن به الگوریتم از دو نوع رویکرد یا تحلیل ممکن است استفاده شود: نحوی یا معنایی. متخصصان باتوجه‌به کاربرد و اطلاعاتی که می‌‌خواهند از پردازش زبان طبیعی دریافت کنند، رویکرد و ابزارها را انتخاب می‌کنند. درهرحال، از ۵ تکنولوژی زیر حتما استفاده می‌شود و موارد زیر به‌نوعی پایه‌های اصلی پردازش زبان طبیعی هستند:

    Tokenization: ابتدا باید داده‌ی ساختارنیافته به کوچک‌ترین واحد‌های سازنده‌اش (کلمات) تجزیه شود. هر کلمه برای ماشین یک Token است. مثلا جمله‌ی قبل، ۷ کلمه یعنی ۷ token (کد) دارد.
    Stop Words: لازم است کلماتی، مانند حروف ربط یا افعال اسنادی (مثل است)، که اطلاعات مهم متن به‌حساب نمی‌آیند؛ حذف شوند.
    Stemming or Lemmatization: حالا ماشین باید ریشه‌ی لغوی (stem) هر کلمه را پیدا کند، یعنی باید پسوند‌ها و پیشوند‌های  کلمات را حذف کند. مثلا، ریشه‌ی خوب‌ترین و خوب‌تر و خوب‌ها با حذف‌کردن ترین و تر و ها به‌دست می‌آید. البته نکته اینجاست که ریشه‌ی همه‌ی کلمات با حذف‌کردن پسوند‌ها یا پیشوندها به‌دست نمی‌آید (مثلا ریشه‌ی دو واژه‌ی درها و دَرْک یکی نیست). پس، برای بعضی کلمات ماشین باید معنای اصلی آن (Lemma) را، یعنی معنایی که در لغت‌نامه برای آن کلمه درنظر گرفته‌شده است، بیابد.
    Part of Speech Tagging: حالا باید نقش دستوری هرکلمه (کد) در جمله، فعل است یا صفت یا …، مشخص شود.
    Named Entity Recognition: وقتی من و شما اسم پاریس یا تهران را می‌شنویم و می‌خوانیم، چه‌چیزی درباره‌ی این دو اسم به‌ ذهن ما متبادر می‌شود؟ پایتخت کشور فرانسه و ایران. الگوریتم برای درک‌کردن زبان طبیعی باید اسامی خاص، اعلام و اطلاعات عمومی را بداند و بفهمد.

 

تکنولوژی ها،‌تکنینک ها و ابزارهای پردازش زبان طبیعی

 
کتابخانه‌های پایتون برای پردازش زبان طبیعی

اغراق نیست اگر گفته شود که زبان برنامه‌نویسی پایتون درخدمت هوش مصنوعی است. پایتون است که درکنار سایر علوم و تکنولوژی‌ها یادگیری ماشین و یادگیری عمیق را ممکن کرده است. مسیر یادگیری ماشین لرنینگ و دیپ لرنینگ با یادگیری پایتون آغاز می‌شود. شاید گمان کنید برای پردازش زبان طبیعی حتما باید متخصص ماشین لرنینگ باشید. اما این تصور اشتباه است.

اگر کسی زبان برنامه‌نویسی پایتون را یاد گرفته باشد، با کمک‌گرفتن از NLTK (Natural Language Toolkit) که پکیج پایتون برای پردازش زبان طبیعی است؛ به‌راحتی قادر است متنی را که می‌خواهد، آن‌طور که لازم دارد پردازش کند و تازه نتایج آن را در قالب نمودار یا چارت (بصری‌سازی‌شده) خروجی بگیرد. آن پکیچ مدلی متن‌باز برای پردازش زبان طبیعی است که منابع آموزشی آنلاین زیادی هم برای یادگیری آن موجود است.

البته، علاوه‌بر آن پکیج، پایتون کتابخانه‌‌های بسیار قدرتمندی دارد که با آن‌ها بعضی‌از تکنولوژی‌های پردازش زبان طبیعی را می‌شود اجرا کرد. کتابخانه‌ی Gensim برای ساختن و توسعه‌ی مدل‌های پردازش زبان طبیعی معنایی است. Intel NLP Architect کتابخانه‌ی دیگری برای توپولوژی و تکنیک‌های یادگیری عمیق است که پردازش زبان طبیعی را ارتقا می‌دهد.

 
چرا پردازش زبان طبیعی مهم است؟

برای پاسخ‌دادن به این سوال که چرا پردازش زبان طبیعی مهم است باید به کاربردهای آن در حوزه‌های گوناگون نگاهی بیندازیم. ‌پردازش زبان طبیعی فقط برای درک‌کردن ساختار زبان و همچنین تعاملات انسانی، ساختن ربات‌ها و دستیارها‌ی مجازی (Virtual Assistants) مثل الکسا و یا حتی چت‌بات‌ها مفید و کاربردی نیست. کسب‌وکارها و شرکت‌های تجاری می‌توانند از پردازش زبان طبیعی به‌نفع خودشان استفاده کنند.

چون پردازش زبان طبیعی و الگوریتم‌هایی که زبان طبیعی را می‌فهمند می‌توانند داده‌های متنی (نظرات و کامنت‌ها) را که کسب‌وکارها از شبکه‌های اجتماعی یا دیگر پلتفرم‌ها جمع‌آوری کردند، درک و تحلیل کنند. درنتیجه، داده‌ی لازم برای شناختن و پیش‌بینی‌کردن رفتار مشتری برای کسب‌وکار فراهم می‌شود.
مهم‌ترین کاربردهای NLP

    Text Extraction or Summarization: الگوریتم‌‌های پردازش زبان طبیعی می‌توانند متن را پردازش کنند، اطلاعات مهم را استخراج کنند یا خلاصه‌ای از متن تحویل دهند. ممکن است از ماشین خواسته شود تا در متن دنبال کلمه‌کلیدی مشخصی بگردد و فقط قسمت‌هایی از متن را استخراج کند که کلمه‌کلیدی در آن به‌کار رفته است.

 

      Text Classification and Sentiment Analysis: بگذارید مثالی بزنم تا این کاربرد کاملا مشخص شود. تصور کنید شما کسب‌وکار بسیار بزرگی دارید که میلیون‌ها فالوئر در شبکه‌های اجتماعی دارد. درباره‌ی برند و محصولات شما در فضای مجازی و نت بسیار صحبت می‌شود. حالا کسب‌وکار شما اگر بخواهد بداند نظرات کاربران درباره‌ی جدیدترین محصول مثبت است یا منفی، می‌تواند این کار را با دسته‌بندی متن‌ (داده‌ها) به‌وسیله‌ی تعریف‌کردن تگ‌های مشخصی برای ماشین انجام دهد. البته، کسب‌و‌کارها از تحلیل احساسات نیز برای تکمیل‌کردن داده‌های به‌دست‌آمده از متن استفاده می‌کنند تا بفهمند کاربری که در سوشال مدیا مثبت درباره‌ی برند یا محصول نوشته چه احساسی داشته؛ شوخی کرده، طعنه زده یا جدی بوده است.

 

    Machine Translation: اغراق نیست اگر گفته شود همه‌ی کاربران اینترنت تجربه‌ی استفاده‌از گوگل ترنسلیت را داشته‌اند. به‌همین‌دلیل، می‌دانیم اگر یک متن ۲۰ خطی انگلیسی را به گوگل ترنسلیت بدهیم، ترجمه‌ی فارسی روان و درستی به ما نمی‌دهد. پیشرفت در پردازش زبان طبیعی و آموزش‌دادن الگوریتم‌‌هایی که بهتر بتوانند زمینه و موضوع هر متن را بفهمند، به ارتقای ترجمه‌های ماشینی کمک بسیار زیادی می‌کند.

 

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com

متخصص NLP کیست؟

کارشناس پردازش زبان طبیعی، مهندس پردازش زبان طبیعی، کارشناس یا مهندس ماشین لرنینگ که متخصص پردازش زبان طبیعی است و متخصص دیپ لرنینگ همگی متخصصانی هستند که دانش و مهارت لازم را برای انجام‌دادن پروژه‌های پردازش زبان طبیعی دارند. وجه‌مشترک همه‌ی آن کارشناسان این است که مهارت لازم برای استفاده‌از ابزارها، تکنیک‌ها و تکنولوژی‌های پردازش زبان طبیعی را دارند و می‌توانند الگوریتمی را آموزش دهند و ماشینی (برنامه‌ای) بسازند که زبان انسان را بفهمد.

البته، هدف و کاری که برای آن نیاز به آموزش‌دادن و توسعه‌ی الگوریتم پردازش زبان طبیعی است، نوع متخصصانی را که باید در پروژه کار کنند تعیین می‌کند. مثلا، ممکن است کسب‌وکاری بخواهد برای خودش یک مدل تحلیل احساسات طراحی کند. برای این کسب‌وکار دیتا ساینتیستی که با NLP آشنایی دارد ایده‌آل است. چون کسب‌‌وکار کسی را می‌خواهد که جمع‌آوری و تحلیل‌داده و همچنین ماشین لرنینگ را بداند. برای بعضی پروژه‌ها شاید لازم باشد مهندس پردازش زبان طبیعی به علم زبان‌شناسی یا زبان‌شناسی رایانشی کاملا مسلط  یا حتی تحصیلات دانشگاهی در آن رشته‌ها داشته باشد.

 
درآمد و بازار کار مهندس پردازش زبان طبیعی در ایران و جهان چطور است؟

خب، رسیدیم به آخرین سوال مهم درباره‌ی NLP: درآمد مهندس یا متخصص پردازش زبان طبیعی چه‌قدر است؟ آیا فرصت‌های شغلی قابل‌توجهی در ایران و جهان برای این متخصص وجود دارد؟ اگر فرصت‌های شغلی برای مهندس پردازش زبان طبیعی را در لینکدین جستجو کنید، به ۲۹‌هزار فرصت شغلی در آمریکا و هزار شغل در کانادا می‌رسید. متوسط حقوق سالانه‌ی متخصص NLP در آمریکا ۱۱۲هزار دلار، در انگلستان ۵۶هزار پوند و در کانادا ۹۵هزار دلار کاناداست.

 

درآمد متخصص nlp در کانادا

 

در ایران اما، بازار کار برای متخصصان پردازش زبان طبیعی هنوز خیلی خوب نیست. در جابینجا فقط ۲ فرصت شغلی برای کارشناس پردازش زبان طبیعی وجود دارد. در تصویر زیر مهارت‌هایی را که در یکی‌از آن آگهی‌ها ذکر شده است، می‌بینید.

 

مهارت های متخصص پردازش زبان طبیعی بازار کار ایران

 

 

چه باید کرد؟ علاقه‌مند به پردازش زبان طبیعی نباید در ایران انتظار داشته باشد که کاری پیدا کند؟ واقعیت این است که در ایران شرکت‌هایی به بزرگی گوگل و اپل وجود ندارند که به متخصصان پردازش زبان طبیعی نیاز داشته باشند. اما می‌شود امیدوار بود که کسب‌وکارها و همچنین دانشگا‌ه‌ها و موسسات علمی-پژو‌هشی بیشتری درآیند‌ه‌ای نه‌چندان‌دور، همگام با جهان و پیشرفت‌ها در این حوزه، از پردازش زبان طبیعی بهره ببرند و به متخصصان NLP و یا مهندسان ماشین لرنینگ که با NLP آشنایی دارند نیاز پیدا کنند.

 

 
جمع‌بندی و نتیجه‌گیری

۱. پردازش زبان طبیعی مجموعه‌ای از تکنولوژی‌ها و تکنیک‌هاست که زبان انسان را برای ماشین ترجمه می‌کند تا ماشین آن را بفهمد و اطلاعاتی را که باید از آن استخراج کند و دراختیار انسان‌ها قرار دهد.

۲. کاربردهای NLP فقط برای کمک به کسب‌وکارها برای بیشتر بهره‌بردن از داده‌ها و شناختن عمیق‌تر مشتریان و همچنین رشدوتوسعه‌ی حوزه‌ی هوش مصنوعی نیست. پردازش زبان طبیعی کاربردهای علمی-آکادمیک برای متخصصان زبان‌شناسی هم دارد.

۳. NLP درست مانند هوش مصنوعی هرروز پیشرفت می‌کند و کاربردهای جدیدی می‌یابد. به‌همین‌دلیل، اگر کسی علاقه دارد تا به ماشین‌ها یاد بدهد که زبان انسان را بفهمند، حتما در آینده در هر نقطه‌ای در این جهان که باشد؛ برای او کاری پیدا می‌شود.

۴. پردازش زبان طبیعی حوزه‌‌ای میان‌رشته‌ای است. اما برای ورود و کارکردن در آن حوزه الزاما نباید زبان‌شناس بود و در دانشگاه تحصیل کرد. چون با یادگیری پایتون می‌شود الگوریتم‌ها و مدل‌های NLP را ساخت.

۵. برای علاقه‌‌مندانی که در ایران زندگی می‌کنند و نگران آینده‌ی شغلی پردازش زبان طبیعی هستند، ۲ راه‌حل وجود دارد: آموزش ماشین لرنینگ یا دیپ لرنینگ. دراین‌صورت، علاقه‌مند می‌تواند علاوه‌بر پروژه‌های پردازش زبان طبیعی در پروژه‌های دیگری که به یادگیری ماشین و دیپ لرنینگ نیاز است مشغول شود.

 

 

     یست؟
    منظور از stemming و lemmatization چیست و چه تفاوتی دارند؟
    منظور از POS چیست؟

کار با کتابخانه های NumPy و Pandas

    آموزش کار با Jupyter Notebook
    آموزش کار با Google Coolab
    آموزش کار با کتابخانه Pandas
    آموزش کار با کتابخانه Numpy
    آموزش کار با کتابخانه Sklearn
    آموزش کار با کتابخانه Tensorflow
    آموزش کار با کتابخانه Keras
    آموزش کار با کتابخانه Genism
    آموزش کار با کتابخانه FastText

نصب و کار با کتابخانه های پیش پردازش متون فارسی

    معرفی و نصب کتابخانه Hazm
    معرفی و نصب کتابخانه Parsivar
    معرفی و نصب کتابخانه ابزار Nltk

فاز Feature Selection در NLP

    معرفی معیارهای Term Frequency , Inverse Document Frequency
    تبدیل متن به Vector

مفهوم Word Embedding یا تعبیه سازی کلمات

    Word Embbeding چیست؟
    بررسی مزایای استفاده از تعبیه سازی کلمات
    بررسی کاربردهای تعبیه سازی کلمات
    معرفی انواع تعبیه سازی کلمات
    Word2Vec چطور کار می کند؟
    کتابخانه‌های  برتر برای پردازش زبان طبیعی در پایتون کدام‌اند؟
    و …

آشنایی با مدرس دوره

محمد حیدری فارغ التحصیل مقطع کارشناسی مهندسی نرم افزار، دانشجوی اسبق مقطع کارشناسی ارشد مهندسی فناوری اطلاعات، گرایش معماری سازمانی در دانشگاه شهید بهشتی تهران و فارغ التحصیل مقطع کارشناسی ارشد مهندسی فناوری اطلاعات گرایش شبکه های پیچیده از دانشگاه تربیت مدرس تهران است. ایشان هم اکنون بعنوان پژوهشگر ارشد علوم داده در HiTS فعالیت می کند و بنیانگذار مدرسه علوم داده وبیگ دیتا بعنوان یک پلتفرم آموزشی آنلاین هوش مصنوعی برای پارسی زبانان دنیا می باشند.

سوابق پژوهشی و برگزاری کارگاه های آموزشی در سطح ملی

    دارند مقاله برگزیده در ICWR – International Conference on Web Research
    برگزاری کارگاه آموزشی پردازش و تحلیل کلان داده بر بستر موتور پردازشی اسپارک
        (یازدهمین کنفرانس بین المللی فناوری اطلاعات، دانشگاه شهید بهشتی تهران)
    برگزاری کارگاه آموزشی Towards Big Data Processing by Spark Unified Analytics Engine
        (ششمین سمینار زمستانه علوم کامپیوتر دانشگاه صنعتی شریف)
    برگزاری کارگاه آموزشی Graph Analytics Algorithms, Community Detection Approaches
        (پنجمین سمینار زمستانه علوم کامپیوتر دانشگاه صنعتی شریف)
    برگزاری کارگاه آموزشی Deep Learning-based Natural Language Processing
        (همایش علوم داده و هوش مصنوعی دانشگاه صنعتی امیرکبیر)

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


دانلود درسنامه های دوره پردازش زبان طبیعی با یادگیری عمیق
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت اول ویدئو
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت دوم ویدئو

8:12
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت سوم ویدئو

3:36
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت چهارم ویدئو

9:45
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت پنجم ویدئو

3:00
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت ششم ویدئو

3:52
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت هفتم ویدئو

11:41
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت هشتم ویدئو

10:29
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت نهم ویدئو

12:15
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت دهم ویدئو

11:10
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت یازدهم ویدئو

47:30
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت دوازدهم ویدئو

37:12
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت سیزدهم ویدئو

46:25
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت چهاردهم ویدئو

28:22
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت پانزدهم ویدئو

15:12
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت شانزدهم ویدئو

25:54
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت هفدهم ویدئو

30:17
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت هجدهم ویدئو

5:13
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت نوزدهم ویدئو

34:22
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت بیستم ویدئو

29:36
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دوره آموزشی پردازش زبان طبیعی با یادگیری عمیق، قسمت بیست و یکم ویدئو

14:29
خصوصی
این بخش خصوصی می باشد. برای دسترسی کامل به دروس این دوره باید این دوره را خریداری نمایید.
دانلود قطعه کُدها و دیتاست های دوره
دانلود پروژه FastText فایل های ضمیمه
خصوصی
نایی با پردازش زبان طبیعی

پردازش زبان طبیعی (NLP) زیر مجموعه ای از زبان شناسی، علوم کامپیوتر، مهندسی اطلاعات و هوش مصنوعی است که به تعامل بین علم داده و زبان های انسانی (طبیعی)، به ویژه نحوه برنامه ریزی رایانه ها برای پردازش و تحلیل مقادیر زیادی از داده های زبان طبیعی مربوط می شود. چالش ها در پردازش زبان طبیعی اغلب شامل شناخت گفتار، درک زبان طبیعی و تولید زبان طبیعی است. پردازش زبان طبیعی (NLP) زیر مجموعه ای از هوش مصنوعی (AI) است که هدف آن بهبود ارتباط بین انسان و کامپیوتر است. مردم به زبان هایی که توسط قوانین مستعد خطا تعریف شده اند. آنها اشتباه می کنند و از عبارات غیر منطقی استفاده می کنند، اما هنوز همدیگر را خیلی خوب درک می کنند. از طرف دیگر رایانه ها به ساختار کاملی احتیاج دارند. از آنجا که معدودی از ما می توانند از دودویی خام استفاده کنیم و ماشین هنوز هم با مفهوم طعم سرسختانه برخورد می کنند، قطعاً شکافی وجود دارد.

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


موفقیت در تجارت به تجزیه و تحلیل داده ها بستگی دارد، زیرا این امر جهت پیشرفت را فراهم می کند. اما برخلاف صفحات گسترده و جداول، زبان طبیعی منبع غیرساختاری است. داده های متنی و کلامی که مردم هر روز تولید می کنند از قدرت پردازش انسانی فراتر می رود. بنابراین، راه حل این است که به طور خودکار اطلاعات مرتبط را استخراج کنید. پردازش زبان طبیعی به ماشین ها اجازه می دهد تا معنای پیچیده را در جملات ما بفهمند. این کار در پس زمینه خدمات بسیاری از چت بات از طریق دستیاران مجازی تا ردیابی روند رسانه های اجتماعی انجام می شود. نحوه پردازش زبان طبیعی به دو روش اصلی است که در پردازش زبان طبیعی مورد استفاده قرار می گیرند که عبارت است از:

    ترتیب کلمات در یک جمله برای ایجاد گرامری( NLP از syntax برای ارزیابی معنی از زبانی مبتنی بر قواعد دستوری استفاده می کند.)
    تکنیک های نحوی استفاده شده شامل تجزیه (تجزیه گرامری برای یک جمله)
    تقسیم بندی کلمه (که یک متن بزرگ را به واحدها تقسیم می کند.)
    شکستن جمله (که مرزهای جمله را در متون بزرگ قرار می دهد.)
    تقسیم بندی مورفولوژیکی (که کلمات را به گروه ها تقسیم می کند.)
    ساقه (که کلمات را با تورم در آنها به اشکال ریشه ای تقسیم می کند.)

NLP معنایی شامل استفاده و معنی پشت کلمات است. برای درک معنی و ساختار جملات از الگوریتم ها استفاده می کند. تکنیک هایی که NLP با معنی شناسی به کار می برد عبارتند از:

    عدم تفسیر کلمه (که معنای کلمه را براساس متن به دست می آورد)
    به رسمیت شناختن موجودیت (که مشخص کننده کلماتی است که می توانند در گروهها طبقه بندی شوند)
    تولید زبان طبیعی (که از یک پایگاه داده برای تعیین استفاده می کند) استفاده می کند.

رویکردهای فعلی NLP مبتنی بر یادگیری عمیق است، نوعی هوش مصنوعی که در داده ها از الگوهای موجود برای بهبود درک برنامه استفاده و استفاده می کند. مدلهای یادگیری عمیق برای آموزش و شناسایی همبستگی های مرتبط به مقادیر زیادی از داده های برچسب نیاز دارند و جمع آوری این نوع مجموعه داده های بزرگ یکی از اصلی ترین موانع NLP در حال حاضر است. رویکردهای اولیه به NLP شامل رویکرد مبتنی بر قوانین است، که در آن الگوریتم های یادگیری ماشین ساده تر گفته شده است که چه کلماتی و عباراتی را برای جستجو در متن جستجو می کنند و هنگامی که این عبارات ظاهر می شوند پاسخ های خاص داده می شوند. اما یادگیری عمیق یک رویکرد انعطاف پذیر و شهودی است که در آن الگوریتم ها یاد می گیرند قصد سخنرانان را از بسیاری از نمونه ها مشخص کنند، تقریباً مانند این که کودک چگونه زبان انسانی را یاد بگیرد.

سه ابزاری که معمولاً برای NLP استفاده می شود شامل NLTK ،Gensim و Intel NLP Architect است. NTLK، ابزار زبان طبیعی، یک ماژول پایتون اوپن سورس با مجموعه داده ها و آموزش است. Gensim یک کتابخانه پایتون برای مدل سازی موضوع و نمایه سازی اسناد است. Intel NLP Architect همچنین یکی دیگر از کتابخانه های پایتون برای یادگیری ژرفای توپولوژی ها و تکنیک ها است.

کاربرد پردازش زبان طبیعی

کاربرد پردازش زبان طبیعی شامل تجزیه و تحلیل، درک و در نهایت تولید پاسخ برای ایجاد ارتباط با سیستم ها با استفاده از انسان و در عوض از زبان های رایانه ای برای متن می باشد. NLP اغلب از معنایی (مردم، مکانها، اشیا) مفاهیم (کلمات و عباراتی که بیانگر یک ایده خاص است)، موضوعات (گروه هایی از مفاهیم همزمان) یا احساسات (مثبت، منفی، بی طرف) برای تجزیه جملات برای اشخاص استفاده می کند. امروز NLP در ابزار تحلیلی متن و رسانه های اجتماعی برای تجزیه و تحلیل موضوعات و نظرات استفاده می شود. یک مورد محبوب برای NLP در حال حاضر تجزیه و تحلیل توییت ها یا مرور سایت ها برای بازخورد محصولات است. به عنوان مثال، یک بخش بازاریابی برای یک شرکت الکترونیکی ممکن است یک کمپین برای شارژر های قابل حمل جدید با قیمت مناسب براساس فروش را راه اندازی کند. با این حال، در واقعیت ممکن است مشتری محصول را دوست نداشته باشد و ممکن است از آن استفاده کند. اگر شرکت بتواند آن توییت ها و نظرات را با استفاده از فناوری های NLP تجزیه و تحلیل و بررسی کند، قادر به درک آنچه مردم در مورد آن صحبت می کنند، احساسات آنها (مثبت، منفی، بی طرف) است. اگرچه تجزیه و تحلیل متن برای بازاریابی بسیار مهم است، اما استفاده دیگر از طبیعی پردازش زبان برای تولید زبان برای فعال کردن ارتباط با سیستم ها با استفاده از زبان بشر این در برنامه های تعاملی مانند چت بات ها یا موارد دیگر یافت می شود. برنامه های کاربردی مشتری، مانند مسیریابی مشتری به یک عامل خاص بر اساس وضعیت و آنچه گفته شد.

با NLP می توان کارهای خاصی مانند گفتار خودکار و نوشتن متن خودکار را در زمان کمتری انجام داد. به دلیل وجود داده های بزرگ متن در اطراف ما، چرا ما از رایانه ها تمایل و توانایی بی رویه برای اجرای چندین الگوریتم برای انجام کارها در هیچ زمان استفاده نمی کنیم. این کارها شامل برنامه های دیگر NLP مانند خلاصه خودکار (برای تولید خلاصه متن داده شده) و ترجمه ماشینی (ترجمه یک زبان به زبان دیگر) می باشد. ترجمه ماشین یک برنامه عظیم برای NLP است که به ما امکان می دهد موانع برقراری ارتباط با افراد از سراسر جهان را بر طرف کنیم و همچنین کتابچه های راهنمای فنی و کاتالوگ هایی که به زبان خارجی نوشته شده است را درک کنیم. Google Translate هر روز توسط 500 میلیون نفر برای درک بیش از 100 زبان جهان استفاده می شود. فناوری پردازش زبان طبیعی حتی برای نگهداری هواپیماها نیز مورد استفاده قرار می گیرد. این مکانیک نه تنها می تواند به مکانیک اطلاعات در کتابچه های راهنمای هواپیماهای عظیم کمک کند بلکه می تواند در توصیف مشکلات گزارش شده بصورت کلامی یا دست نوشته شده از خلبانان و انسانهای دیگر نیز معنی پیدا کند. اگرچه این مسئله پیچیده است، حتی کارهایی انجام می شود که به کمک پردازش زبان طبیعی در زمینه کار پیش بینی پلیس برای مشخص کردن انگیزه در جرایم وجود داشته باشند.

از آنجا که رهبران صنعت همچنان به آزمایش و توسعه پیشرفتهای در زمینه پردازش زبان طبیعی مانند تقسیم الکسا آمازون با استفاده از یک شبکه عصبی برای انتقال یادگیری می پردازند، می توان انتظار داشت که NLP در آینده نزدیک حتی بهتر و تأثیرگذارتر برای تجارت باشد.

پردازش زبان طبیعی نیروی محرکه برنامه های متداول زیر است:

    برنامه های ترجمه زبان مانند Google Translate
    پردازنده های Word مانند Microsoft Word و Grammarly که از NLP استفاده می کنند تا دقت گرامری متن ها را بررسی کنند.
    برنامه های پاسخ دهی صدای تعاملی (IVR) که در مراکز تماس برای پاسخ به درخواست های کاربران خاص استفاده می شوند.
    برنامه های دستیار شخصی مانند OK Google ،Siri ،Cortana و Alexa.

پردازش زبان طبیعی در پایتون

مجموعه ابزار زبان طبیعی (NLTK) محبوب ترین کتابخانه برای پردازش زبان طبیعی (NLP) است که در پایتون نوشته شده است و جامعه بزرگی در پشت آن وجود دارد. NLTK همچنین یادگیری بسیار آسان است، در واقع ساده ترین کتابخانه پردازش زبان طبیعی (NLP) است که شما استفاده خواهید کرد. اگر از Windows یا Linux یا Mac استفاده می کنید، می توانید NLTK را با استفاده از pip نصب کنید:

$ pip install nltk

برای بررسی اینکه NLTK به درستی نصب شده است می توانید ترمینال پایتون را باز کرده و موارد زیر را تایپ کنید:

Import nltk

اگر همه چیز خوب پیش برود، این بدان معنی است که کتابخانه NLTK را با موفقیت نصب کرده اید.

پس از نصب NLTK، باید بسته های NLTK را با اجرای کد زیر نصب کنید:

import nltk
nltk.download()

با استفاده از دانلودر NLTK می تواند انتخاب کند که چه بسته هایی را باید نصب کند. شما می توانید تمام بسته ها را نصب کنید زیرا اندازه های کوچک دارند، بنابراین مشکلی وجود ندارد.essing | NLP) غیرممکن است. با مطالعه این مطلب به فراگیری اینکه NLP چیست می‌پردازیم و درمی‌یابیم که چطور ان ال پی می‌تواند باعث اثرگذاری بیشتر کسب و کارها شود و همچنین به محبوبیت تکنیک‌ها و مثال‌های NLP نیز پی خواهیم برد. در آخر نشان خواهیم داد که چطور می‌توان از ابزارهای NLP به راحتی استفاده و مسیر حرفه‌ای تحلیل داده‌های زبانی را آغاز کرد.
فهرست مطالب این نوشته
NLP چیست ؟
چرا NLP مهم است؟
چالش‌های NLP چیست؟
NLP چگونه کار می کند؟
معرفی فیلم های آموزش داده کاوی و یادگیری ماشین
الگوریتم های NLP چیست ؟
نمونه هایی از تکنیک ها و روش های NLP
کاربرد های NLP چیست؟
برترین ابزار های NLP برای شروع چیست؟
تکامل NLP
نکات پایانی
NLP چیست ؟

پردازش زبان طبیعی (NLP) زیرشاخه‌ای از «هوش مصنوعی» (AI) است و به ماشین‌ها در درک و پردازش زبان انسان‌ها کمک می‌کند، تا آن‌ها بتوانند به‌صورت خودکار وظایف تکراری را انجام دهند. به عنوان مثال این وظایف شامل «ترجمه ماشینی» (Machine Translation)، «خلاصه سازی» (Summarization)، «طبقه‌بندی» (Classification) و «تصحیح املا» (Spell Checker) می‌شوند.

همان‌طور که گفته شد، پردازش زبان طبیعی زیرمجموعه‌ای از هوش مصنوعی است که شامل وجه اشتراک‌ با حوزه‌های «یادگیری ماشین» (Machine Learning | ML) و «یادگیری عمیق» (Deep Learning | DL) می‌شود؛ به طوری که برای پیاده‌سازی و انجام پردازش زبان طبیعی، برخی مدل‌ها و الگوریتم‌های یادگیری ماشین و یادگیری عمیق مورد نیاز هستند.

nlp در هوش مصنوعی

به عنوان مثال «تحلیل احساسات» (Sentiment Analysis) را در نظر بگیرید که در آن از پردازش زبان طبیعی برای تشخیص احساسات در متن استفاده می‌شود. این فرایند دسته‌بندی، یکی از محبوب‌ترین روش‌ها در حوزه NLP است که اغلب توسط کسب و کارها برای تشخیص خودکار احساسات نسبت به برندهای تجاری در رسانه‌های اجتماعی استفاده می‌شود. تجزیه و تحلیل این تعاملات می‌تواند به برندها کمک کند تا مسائل فوری مشتری را که باید سریعا به آنها پاسخ دهند، شناسایی کنند یا بتوانند بر رضایت‌مندی کلی مشتری نظارت داشته باشند.
آموزش مبانی یادگیری عمیق
فیلم آموزش مبانی یادگیری عمیق
دیدن فیلم آموزشی
NLP مخفف چیست؟

NLP مخفف «Natural Language Processing» یعنی «پردازش زبان طبیعی» است. توسعه‌دهندگان این رشته تلاش می‌کنند تا با فهماندن زبان طبیعی انسان با استفاده از هوش مصنوعی به ماشین‌های کامپیوتری، گامی بزرگ برای پیشرفت بردارند. زیرا در صورت درک زبان انسان توسط ماشین‌ها بوسیله ان ال پی، بسیاری از کسب و کارها و پروژه‌ها و حتی زندگی روزمره انسان‌ها تحت تاثیر قرار می‌گیرد و روند رو به رشدی خواهد داشت.
چرا NLP مهم است؟

یکی از دلایل اصلی اهمیت NLP برای کسب و کارها این است که می‌توان از آن برای تجزیه و تحلیل حجم زیادی از داده‌های متنی مانند نظرات رسانه‌های اجتماعی، بلیط‌های پشتیبانی مشتری، دیدگاه‌های آنلاین، گزارش‌های خبری و موارد دیگر استفاده کرد. همه داده‌های کسب و کارها دارای انبوهی از شواهد ارزشمند هستند و NLP می‌تواند به کسب و کارها در کشف فوری آن شواهد کمک کند. NLP این کار را با کمک ماشین‌هایی که زبان انسان را درک می‌کنند، به روشی سریع‌تر، دقیق‌تر و سازگارتر از عوامل انسانی انجام می‌دهد.

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


ابزارهای NLP داده‌ها را بلادرنگ، ۲۴ ساعته و ۷ روز هفته پردازش و شاخص‌های یکسانی را برای همه داده‌های شما اعمال می‌کنند. بنابراین می‌توان اطمینان حاصل کرد که نتایج بدست آمده دقیق و خالی از تناقض‌ هستند. زمانی ابزارهای NLP می‌توانند بفهمند که بخشی از متن درباره چیست، و حتی مواردی مثل احساسات آن را اندازه‌گیری کنند، کسب و کارها می‌توانند شروع به اولویت‌بندی و سازماندهی داده‌های خود کنند، به‌طوریکه مناسب و مطابق با نیازهایشان باشد.
چالش‌های NLP چیست؟

با وجود چالش‌های فراوان پردازش زبان طبیعی، مزایای NLP برای کسب و کارها به حدی است که NLP را به یک زمینهٔ سرمایه‌گذاری ارزشمند تبدیل می‌کند. با این حال، می‌بایست پیش از شروع یادگیری NLP نسبت به این چالش‌ها آگاهی داشته باشیم.

زبان انسانی پیچیده، مبهم، بی‌نظم و متنوع است. بیش از ۶۵۰۰ زبان در جهان وجود دارد که هر کدام از آن‌ها قوانین سینتکسی و معنایی خاص خود را دارند. حتی خود انسان‌ها نیز برای درک کامل زبان دچار مشکل هستند. بنابراین برای اینکه ماشین‌ بتواند زبان طبیعی را درک کند، زبان طبیعی ابتدا باید به چیزی تبدیل شود که توسط رایانه‌ها قابل تفسیر باشد.

در NLP، تحلیل‌های سینتکسی و معنایی برای درک ساختار دستوری یک متن و شناسایی چگونگی ارتباط کلمات با یکدیگر در یک زمینه معین، امری کلیدی است. اما تبدیل متن به چیزی که توسط رایانه قابل تفسیر باشد، پیچیده است. دانشمندان داده باید ابزارهای NLP را به نحوی آموزش دهند تا فراتر از تعاریف و ترتیب کلمات، الگوریتم NLP برای درک بافت و مفهوم متن، به ابهامات کلمه‌ای و سایر مفاهیم پیچیده مرتبط با زبان انسانی توجه کند.

پردازش زبان طبیعی چیست

وجود تعدادی از چالش‌های NLP این واقعیت را اثبات می‌کند که زبان طبیعی، همیشه در حال تکامل و تا حدی مبهم است. این چالش‌ها عبارتند از:

    «صحت» (Precision): از دیرباز کامپیوترها نیاز داشتند تا انسان‌ها با زبان برنامه نویسی دقیق، بدون ابهام و بسیار ساختار یافته یا از طریق تعداد محدودی از دستورات صوتی به وضوح بیان شده با آن‌ها صحبت کنند. به هرحال گفتار انسان همیشه دقیق نیست؛ اغلب مبهم است و ساختار زبانی می‌تواند به بسیاری از متغیرهای پیچیده از جمله زبان عامیانه، گویش‌های منطقه‌ای و بافت اجتماعی بستگی داشته باشد.
    لحن صدا و «تصریف» (Inflection): NLP هنوز کامل نشده است. برای نمونه، «تحلیل معنایی» (Semantic Analysis) هنوز می‌تواند یک چالش باشد. از جمله مشکلات و چالش‌های دیگر NLP می‌توان به این واقعیت اشاره کرد که استفاده انتزاعی از زبان معمولاً برای برنامه‌های کامپیوتری دشوار است. به عنوان مثال، پردازش زبان طبیعی به راحتی «طعنه» را متوجه نمی‌شود. این موضوعات معمولاً مستلزم درک کلمات مورد استفاده و مضمون آن‌ها در مکالمه است. به عنوان نمونه‌ای دیگر، یک جمله بسته به اینکه گوینده روی کدام کلمه یا هجا تاکید می‌کند، می‌تواند معنا را تغییر دهد. الگوریتم‌های NLP ممکن است تغییرات ظریف اما مهم در لحن را در هنگام انجام تشخیص گفتار از دست بدهند. لحن و انحراف گفتار نیز ممکن است بین لهجه‌های مختلف متفاوت باشد، که تجزیه آن برای الگوریتم چالش‌برانگیز است.
    استفاده رو به رشد از زبان: پردازش زبان طبیعی نیز با این واقعیت به چالش کشیده شده است که زبان و نحوه استفاده مردم از آن، به طور مداوم در حال تغییر است. اگرچه قوانینی برای زبان وجود دارد، اما اینطور نیست که این قوانین را روی سنگ نوشته باشند و قابل تغییر نباشند بنابراین، در طول زمان در معرض تحولات زیادی قرار می‌گیرند. قوانین محاسباتی سختی که اکنون کار می‌کنند، ممکن است با تغییر ویژگی‌های زبان دنیای واقعی در طول زمان منسوخ شوند.

آموزش تجزیه و تحلیل و آماده سازی داده ها با پایتون Python
فیلم آموزش تجزیه و تحلیل و آماده سازی داده ها با پایتون Python
دیدن فیلم آموزشی
ابهامات زبان طبیعی برای پردازش های کامپیوتری

سیستم‌های کامپیوتری درکی از کلمات ندارند و برای فهماندن معانی هر کلمه به ماشین‌ها، راه دشواری پیش روی توسعه‌دهندگان است. به عنوان نمونه‌ای طنز به تصویر بالا نگاهی بیاندازید، یک ماشین چطور می‌تواند تفاوت بین دو مفهوم مختلفی که می‌توان از جمله «I am a huge metal fan» برداشت کرد را متوجه شود، زیرا از این جمله هم می‌توان برداشت کرد که یک پنکه فلزی بزرگ دارد خودش را معرفی می‌کند و هم ممکن است منظور این باشد که شخصی طرفدار پر و پا قرص موسیقی متال است. گنگ بودن ذاتی زبان طبیعی انسان، چالش بزرگی برای ماشین‌ها به حساب می‌آید که متخصصان این حوزه همچنان در پی پیدا کردن راه‌حل هایی برای این موضوع هستند.
مطلب پیشنهادی:
ساخت هوش مصنوعی — آموزش کامل رایگان + نمونه پروژه
شروع مطالعه
NLP چگونه کار می کند؟

پس از دانستن چیستی NLP، به سراغ نحوه کارکرد آن می‌رویم. در پردازش زبان طبیعی، زبان انسانی به تکه‌هایی تقسیم می‌شود به نحوی که بتوان ساختار دستوری جملات و معنای کلمات را در آن تکه متن با توجه به زمینه مفهومی متن، مورد تجزیه و تحلیل قرار داده و درک کرد. این به رایانه‌ها کمک می‌کند تا متن گفتاری یا نوشتاری را به همان روش انسان خوانده و درک کنند. وظایف پیش‌پردازش اساسی‌ای که دانشمندان داده می‌بایست انجام دهند تا ابزارهای NLP بتوانند زبان انسانی را درک کنند، عبارت است از:

    واحدسازی (Tokenization): متن را به واحدهای معنایی کوچکتر یا بندهای منفرد تقسیم می‌کند.

Tokenization چیست

    برچسب‌گذاری نقش کلمات (Part-Of-Speech tagging): کلمات را به عنوان اسم، فعل، صفت، قید، ضمایر و غیره علامت‌گذاری می‌کند.

Part-Of-Speech tagging چیست

    بن‌واژه‌سازی (Lemmatization) و ریشه‌یابی (Stemming): کلمات را با تبدیل آن‌ها به شکل و فرم ریشه، استانداردسازی می‌کند.

Lemmatization و Stemming چیست

    حذف کلمات توقف (Stop Words): فیلتر کردن کلمات متداول که اطلاعات کم یا غیریکتایی را اضافه می‌کنند.

Stop Words چیست

در این صورت ابزارهای NLP می‌توانند متن را به چیزی تبدیل کنند که یک رایانه بتواند آن را درک کند. مرحله بعدی، ساخت یک الگوریتم ان ال پی شرح داده خواهد شد. به نظر شما الگوریتم مناسب برای حل مسائل NLP چیست ؟
معرفی فیلم های آموزش داده کاوی و یادگیری ماشین

برای یادگیری هوش مصنوعی، یادگیری ماشین و داده کاوی مجموعه‌ای آموزشی شامل چندین دوره مختلف در فرادرس ایجاد شده است که با استفاده از آن‌ها علاقه‌مندان می‌توانند این مباحث را به گونه‌ای کاربردی و جامع یاد بگیرند. در این مجموعه، دوره‌های عملی و تئوری بسیاری وجود دارد که برای یادگیری هوش مصنوعی و یادگیری ماشین با پایتون یا متلب می‌توان از آن‌ها استفاده کرد. علاوه بر آن، بیش از ۴۰ دوره آموزشی با موضوعات مختلف هوش مصنوعی مثل شبکه‌های عصبی، سیستم‌های فازی، داده کاوی، بهینه‌سازی، الگوریتم ژنتیک، خوشه‌بندی، انتخاب ویژگی، هوش مصنوعی توزیع شده، دسته‌بندی، بازشناسی الگو و بسیاری از موارد دیگر در این مجموعه در دسترس هستند.

    برای دسترسی به همه دوره‌های آموزش داده کاوی و یادگیری ماشین فرادرس + اینجا کلیک کنید.

به ادامه مطلب و ارائه توضیحاتی پیرامون الگوریتم‌های NLP می‌پردازیم.
الگوریتم های NLP چیست ؟

پس از دانستن چیستی NLP و «پیش‌پردازش داده‌ها» (Pre-processed)، وقت آن رسیده است که به مرحله بعدی برویم؛ یعنی ساخت یک الگوریتم ان ال پی و آموزش آن به نحوی که بتواند زبان طبیعی را تفسیر کرده و وظایف خاصی را انجام دهد. دو الگوریتم اصلی برای حل مسائل NLP عبارت است از:

    «رویکرد مبتنی بر قانون» (Rule-based Approach): سیستم‌های مبتنی بر قانون، به قوانین دستوری دست‌سازی که توسط متخصصان زبان شناسی یا «مهندسان دانش» (Knowledge Engineer) ایجاد می‌شود، متکی هستند. این اولین رویکرد برای ساخت الگوریتم های NLP بود و در حال حاضر هم امروزه بسیار مورد استفاده قرار می‌گیرند.
    «الگوریتم‌های یادگیری ماشین» (Machine Learning Algorithms): از طرف دیگر، مدل‌های یادگیری ماشین، مبتنی بر روش‌های آماری هستند و یاد می‌گیرند که پس از دریافت نمونه‌ها (داده‌های آموزشی) وظایف خاصی را انجام دهند.

آموزش کتابخانه scikit-learn در پایتون – الگوریتم های یادگیری ماشین
فیلم آموزش کتابخانه scikit-learn در پایتون – الگوریتم های یادگیری ماشین
دیدن فیلم آموزشی

بزرگترین مزیت الگوریتم‌های یادگیری ماشین، توانایی آن‌ها برای یادگیری با اتکا به خود است. در اینجا لازم نیست قوانین دستی تعریف شوند. در عوض ماشین‌ها از داده‌های قبلی دانش را فرا می‌گیرند تا متکی بر خود پیش‌بینی کنند و در نتیجه این روش‌ها امکان انعطاف‌پذیری بیشتری را فراهم می‌کنند.

الگوریتم‌های یادگیری ماشین، برای یادگیری و فهمیدن رابطه میان ورودی‌ها و خروجی‌ها، داده‌های آموزش و خروجی‌های (برچسب‌ها) متناظر آن‌ها را دریافت می‌کند. سپس ماشین، از روش‌های تجزیه و تحلیل آماری برای ساختن یک "بانک دانش" استفاده می‌کند و پیش از آن‌که داده‌های از پیش دیده‌نشده (متون جدید) را پیش‌بینی کند، تشخیص می‌دهد که کدام یک از ویژگی‌ها (Features)، نمود بهتری برای متن هستند.

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


ان ال پی
نمونه هایی از تکنیک ها و روش های NLP

پردازش زبان طبیعی شما را قادر می‌سازد تا اعمال مختلفی از جمله طبقه‌بندی متن و استخراج قطعاتی از داده‌های مرتبط، تا ترجمه متن از یک زبان به زبان دیگر و خلاصه‌سازی قطعات طولانی متن را انجام دهید.
طبقه‌بندی متن (Text Classification)

طبقه‌بندی متن یکی از اصلی‌ترین وظایف NLP است و از تخصیص دسته‌ها (برچسب‌ها) به متن بر اساس محتوای آن تشکیل می‌شود. مدل‌های طبقه‌بندی می‌توانند اهداف مختلفی داشته باشند، برای مثال به موارد تحلیل احساسات، «طبقه‌بندی موضوعی» (Topic Classification) و «تشخیص قصد و قرض» (Intent Detection) اشاره خواهیم کرد و در ادامه توضیح مفصل‌تری درباره هر یک می‌دهیم.
آموزش پردازش زبان های طبیعی NLP در پایتون Python با پلتفرم NLTK
فیلم آموزش پردازش زبان های طبیعی NLP در پایتون Python با پلتفرم NLTK
دیدن فیلم آموزشی
تحلیل احساسات (Sentiment Analysis)

تحلیل احساسات فرآیند بررسی عواطف موجود در متن و طبقه‌بندی آنها به عنوان مثبت، منفی یا خنثی است. با اجرای تجزیه و تحلیل احساسات در پست‌های رسانه‌های اجتماعی، دیدگاه‌های محصول، نظرسنجی‌های (Net Promotor Score | NPS) و بازخورد مشتریان، کسب‌وکارها می‌توانند شواهد ارزشمند بودن سرمایه خود را درباره چگونگی درک برند آن‌ها توسط مشتریان دریافت کنند.

مجهز بودن به NLP، یک طبقه‌بندی احساسات می‌تواند تفاوت ظریفی که در هر نظر و عقیده‌ای وجود دارد را درک کند، و به طور خودکار دیدگاه‌ها را به عنوان مثبت یا منفی برچسب‌گذاری کند. تصور کنید یک جهش ناگهانی از نظرات منفی درباره برند شما در رسانه‌های اجتماعی شکل گرفته باشد، ابزارهای تحلیل احساسات توانایی تشخیص این اتفاقات را به سرعت دارند، و با استفاده از آن‌ها می‌توان از بروز مشکلات بزرگ‌تر جلوگیری کرد.
تحلیل احساسات nlp
طبقه‌بندی موضوعی (Topic Classification)

طبقه‌بندی موضوعی از شناسایی موضوع یا مبحث اصلی داخل متن و اختصاص تگ‌های از پیش تعریف شده برای آن‌ها تشکیل می‌شود. برای آموزش مدل طبقه‌بندی کننده موضوع خود، نیاز به آشنایی با تجزیه و تحلیل داده‌ها دارید، بنابراین می‌توانید دسته‌بندی‌های مربوطه را تعریف کنید. برای مثال، ممکن است در یک شرکت نرم‌افزاری مشغول باشید و تعدادی زیادی بلیط پشتیبانی مشتری دریافت کنید که به مشکلات فنی، قابلیت استفاده و درخواست‌های ویژگی اشاره می‌کند. در این مورد ممکن است برچسب‌ها به عنوان اشکالات، ویژگی‌ها، درخواست‌ها، «طراحی تعامل/تجربه کاربری» (UX/IX | User Experience/Interaction Design) تعریف شوند.

طبقه بندی موضوعی nlp
تشخیص قصد (Intent Detection)

تشخیص قصد شامل شناسایی مفهوم، منظور و هدف پشت یک متن است. یک راه بسیار خوب برای مرتب‌سازی خروجی پاسخ‌های ایمیل فروش، براساس علاقه‌مندی، نیاز به اطلاعات بیشتر، لغو اشتراک، برگشتن زدن و غیره است. برچسب علاقه‌مندی می‌تواند به شما کمک کند تا به محض اینکه ایمیلی وارد صندوق ورودی شما شد، پتانسیل بالقوه فرصت فروش را پیدا کنید.
استخراج متن (Text Extraction)

نمونه دیگری از استفاده‌های NLP در استخراج متن وجود دارد، که شامل بیرون کشیدن قطعات خاصی از داده‌هایی است که قبلاً در یک متن وجود داشتند. این یک راه عالی برای خلاصه‌سازی خودکار متن یا پیدا کردن اطلاعات کلیدی است. رایج‌ترین نمونه‌های مدل‌های استخراج عبارت از «استخراج کلمات کلیدی» (Keyword Extraction) و «تشخیص موجودیت‌های نامدار» (Named Entity Recognition | NER) است که در ادامه توضیحات بیشتری درمورد آن‌ها خواهیم خواند.
استخراج کلمات کلیدی (Keyword Extraction)

استخراج کلمات کلیدی به‌طور خودکار مهمترین کلمات و عبارات داخل یک متن را بیرون می‌کشد. این مسئله برای شما قابلیت دسته‌بندی از پیش نمایش محتوا و موضوعات اصلی آن، بدون نیاز به خواندن هر قطعه را فراهم می‌کند.
استخراج کلمات کلیدی nlp
تشخیص موجودیت های نامدار Named Entity Recognition (NER)

تشخیص موجودیت‌های نامدار، امکان استخراج نام افراد، شرکت‌ها، مکان‌ها و سایر موارد را از داخل داده‌ها می‌دهد.
تشخیص موجودیت های نامدار nlp
ترجمه ماشینی (Machine Translation)

این یکی از اولین مشکلاتی بود که محققان NLP به آن پرداختند. ابزارهای ترجمه آنلاین (مانند Google Translate) از تکنیک‌های مختلف پردازش زبان طبیعی برای دستیابی به سطوح انسانی از دقت در ترجمه گفتار و متن به زبان‌های مختلف استفاده می‌کنند. مدل‌های مترجم سفارشی می‌توانند برای به حداکثر رساندن دقت نتایج یک حوزه خاص آموزش داده شوند.
ترجمه ماشینی nlp
مدل سازی موضوعی (Topic Modeling)

مدل سازی موضوعی بسیار شبیه طبقه‌بندی موضوعی است. این نمونه از پردازش زبان طبیعی با گروه‌بندی متن‌ها بر اساس کلمات و عبارات مشابه، موضوعات مرتبط را در یک متن پیدا می‌کند. از آنجایی که نیازی به ایجاد لیستی از تگ‌های از پیش تعریف شده یا برچسب‌گذاری هیچ داده‌ای ندارید، زمانی که هنوز با داده‌های خود آشنا نیستید، مدل‌سازی موضوعی گزینه مناسبی برای تجزیه و تحلیل کندوکاوانه در متن است.
مدل سازی موضوعی nlp
تولید زبان طبیعی در NLP چیست ؟

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


تولید زبان طبیعی، به اختصار NLG، یکی از وظایف پردازش زبان طبیعی است که شامل تحلیل داده‌های بدون ساختار است و از آن به عنوان ورودی خودکار برای ساختن محتوا استفاده می‌شود. از کاربردهای این مورد می‌توان به تولید پاسخ‌های خودکار، نوشتن ایمیل و حتی کتاب اشاره کرد.
تولید زبان طبیعی nlp
کاربرد های NLP چیست؟

پردازش زبان طبیعی به کسب و کارها اجازه می‌دهد تا داده‌های بدون ساختار مانند ایمیل، پست‌های رسانه‌های اجتماعی، بررسی‌های محصول، نظرسنجی‌های آنلاین و بلیط‌های پشتیبانی مشتری را تحلیل و درک کنند و اطلاعات ارزشمندی را برای ارتقاء فرایندهای تصمیم‌گیری خود بدست آورند. شرکت‌ها همچنین پس از دانستن اینکه NLP چیست، از آن برای خودکارسازی وظایف روزمره، کاهش زمان، هزینه و در نهایت کارآمدتر شدن، استفاده می‌کنند. در ادامه چند نمونه از کاربردهای NLP در مشاغل را بررسی خواهیم نمود.
تحلیل خودکار بازخورد مشتریان در NLP چیست ؟

تجزیه و تحلیل خودکار بازخورد مشتری برای دانستن اینکه مشتریان دربارهٔ محصول شما چه فکری می‌کنند ضروری است. با این حال، پردازش این داده‌ها ممکن است دشوار باشد. NLP می‌تواند به شما در استفاده از داده‌های کیفی در نظرسنجی‌های آنلاین، بررسی محصول یا پست‌های رسانه های اجتماعی کمک کند و برای بهبود تجارت خود اطلاعات کسب کنید.

به عنوان مثال، شاخص «NPS | Net Promoter Score» اغلب برای اندازه‌گیری رضایت مشتری‌ها استفاده می‌شود. در مرحله اول، از مشتریان خواسته می شود که از صفر تا ده، شرکتی را بر اساس اینکه احتمالاً آن را به یک دوست توصیه می‌کنند، امتیازدهی کنند (امتیازهای پایین به عنوان دفع‌کننده‌ها، امتیاز متوسط به عنوان خنثی و امتیازات بالا به عنوان ترویج‌کننده‌ها طبقه‌بندی می‌شوند). سپس با یک سؤال پایان‌باز، دلایل نمره خود را از مشتریان می‌پرسند.

با استفاده از یک طبقه‌بندی‌کننده موضوع NLP، می‌توانید هر پاسخ پایان‌باز را به گروه‌هایی مانند UX محصول، پشتیبانی مشتری، سهولت استفاده و غیره برچسب گذاری کنید، سپس، این داده‌ها را در دسته‌های ترویج‌کننده، دفع‌کننده و خنثی طبقه‌بندی کنید تا ببینید که هر دسته در کدام گروه شایع‌تر است:

در این مثال، در بالا، نتایج نشان می‌دهد که مشتریان از جنبه‌هایی مانند سهولت استفاده و UX محصول بسیار راضی هستند (از آنجا که بیشتر این پاسخ‌ها از طرف ترویج‌کننده‌ها هستند)، در حالی که از سایر ویژگی‌های محصول رضایت چندانی ندارند.
عملیات خودکار پشتیبانی از مشتری در NLP چیست ؟

کسب و کارها از مدل‌های NLP برای خودکارسازی وظایف خسته‌کننده و وقت‌گیر در زمینه‌هایی مانند خدمات مشتریان استفاده می‌کنند. این منجر به فرآیندهای کارآمدتری می‌شود و نمایندگان پشتیبانی، زمان بیشتری را برای تمرکز روی آنچه مهم است، یعنی «ارائه تجربهٔ پشتیبانی برجسته» صرف خواهند کرد. اتوماسیون خدمات مشتری با استفاده از ان ال پی مجموعه‌ای از فرآیندها، از مسیریابی تیکت‌ها به مناسب‌ترین فرد گرفته تا استفاده از چت‌بات برای حل سؤالات مکرر را شامل می‌شود. در ادامه چند مثال در این خصوص ارائه شده است.

    مدل‌های طبقه‌بندی متن به شرکت‌ها امکان می‌دهد تیکت‌های پشتیبانی را بر اساس معیارهای مختلف، مانند موضوع، احساسات یا زبان برچسب‌گذاری کرده و تیکت به مناسب‌ترین نمایندهٔ پشتیانی ارسال شود. به عنوان مثال، یک شرکت تجارت الکترونیک ممکن است از یک طبقه‌بندی‌کننده موضوع استفاده کند تا تیکت پشتیبانی به مشکل حمل و نقل، کالای گمشده یا کالای برگشتی از سایر دسته‌ها تفکیک شود.
    همچنین می‌توان از طبقه‌بندها برای تشخیص فوریت در بلیط‌های پشتیبانی مشتری با شناخت عباراتی مانند "در اسرع وقت، بلافاصله یا همین حالا" استفاده کرد و این امر به نمایندگان پشتیبانی اجازه می‌دهد که ابتدا این موارد را بررسی کنند.
    تیم‌های پشتیبانی مشتری به طور فزاینده‌ای از چت‌بات‌ها برای رسیدگی به سؤالات روزمره استفاده می‌کنند. این امر باعث کاهش هزینه‌ها می‌شود و نمایندگان پشتیبانی را قادر می‌سازد تا بیشتر روی وظایفی تمرکز کنند که نیاز به شخصی‌سازی بیشتری دارند و در نتیجه زمان انتظار مشتری کاهش می‌یابد.

کاربرد های nlp
برترین ابزار های NLP برای شروع چیست؟

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


پردازش زبان طبیعی یکی از پیچیده‌ترین زمینه‌های هوش مصنوعی است. اما نیازی به ورود مستقیم در بسیاری از وظایف NLP مانند تجزیه و تحلیل احساسات یا استخراج کلمات کلیدی ندارد. ابزارهای آنلاین پردازش زبان طبیعی بسیاری وجود دارند که پردازش زبان را در دسترس همه قرار می‌دهند و این امکان را فراهم می‌کنند که حجم زیادی از داده‌ها به روشی بسیار ساده و بصری تجزیه و تحلیل شوند.

پلتفرم‌های «نرم‌افزار به عنوان یک سرویس» (SaaS) جایگزین‌های بسیار خوبی برای کتابخانه‌های منبع باز هستند، زیرا آنها راه‌حل‌های آماده‌ استفاده‌ای را ارائه می‌دهند که اغلب برای به‌کارگیری، بسیار آسان هستند و به برنامه‌نویسی یا دانش یادگیری ماشین احتیاج ندارند.
آموزش یادگیری ماشین
فیلم آموزش یادگیری ماشین
دیدن فیلم آموزشی

بیشتر این ابزارها، APIهای NLP‌ خود را برای زبان برنامه‌نویسی پایتون ارائه می‌دهند که تنها با وارد کردن چند خط کد در کد منبع، با برنامه‌های روزمرهٔ خود، قابلیت ادغام دارند. چند مورد از بهترین ابزارهای SaaS پردازش زبان طبیعی عبارتند از:

    Google Cloud NLP
    IBM Watson
    Aylien
    Amazon Comprehend
    MeaningCloud

انتخاب ابزار NLP، بستگی به احساس راحتی هنگام استفاده از آن و وظایفی دارد که می‌خواهید انجام دهید. به عنوان مثال، Google Cloud NLP مجموعه‌ای از ابزارهای NLP بدون نیاز به کد را ارائه می‌دهد که به راحتی برای کاربران قابل استفاده است. پس از فراگیری این ابزارها، می‌توان یک مدل یادگیری ماشین سفارشی ساخت و آن را با معیارهای خود آموزش داد تا نتایج دقیق‌تری بدست آید.

nlp چیست

در بخش بعدی مطلب NLP چیست به بحث تکامل NLP در طول زمان پرداخته شده است.
تکامل NLP

پردازش زبان طبیعی ریشه در رشته‌های مختلفی، از جمله علوم کامپیوتر و زبان‌شناسی محاسباتی دارد که به اواسط قرن بیستم باز می‌گردند. تکامل این حوزه شامل نقاط عطف زیر است:

    دهه ۵۰ میلادی: ریشه‌های پردازش زبان طبیعی به این دهه باز می‌گردد، هنگامی که آلن تورینگ، تست تورینگ را به منظور بررسی هوشمندی رایانه‌ها توسعه داد. این آزمایش شامل تفسیر خودکار و توسعهٔ زبان طبیعی به عنوان معیار هوشمندی بود.
    دهه‌های ۵۰ تا ۹۰ میلادی: NLP تا حد زیادی مبتنی بر قوانین بود؛ قوانینی دست‌ساز و ساخته‌شده توسط زبان‌شناسان برای تعیین چگونگی پردازش زبان در رایانه‌ها
    دهه ۹۰ میلادی: رویکرد بالا به پایین پردازش زبان طبیعی با یک رویکرد آماری‌تر جایگزین شد، زیرا پیشرفت در محاسبات، این روش را به روشی کارآمدتر برای توسعه فناوری NLP تبدیل کرده بود. رایانه‌ها سریع‌تر شده و می‌توانستند برای تدوین قوانین آماری زبان بدون نیاز به زبان‌شناس‌، مورد استفاده قرار گیرند. پردازش زبان طبیعی مبتنی بر داده، طی این دهه به جریان اصلی تبدیل شد. پردازش زبان طبیعی از یک رویکرد مبتنی بر زبان‌شناسی به یک رویکرد مبتنی بر مهندسی تبدیل شده و به جای آنکه تنها به زبان‌شناسی بپردازد، طیف گسترده‌تری از رشته‌های علمی را ترسیم می‌کند.
    سال‌های ۲۰۰۰ تا ۲۰۲۰ میلادی: مجبوبیت پردازش زبان طبیعی در این سال‌ها به شدت افزایش پیدا کرده است. پس از دانستن این موضوع که NLP چیست و با پیشرفت‌های توان محاسباتی، پردازش زبان طبیعی کاربردهای فراوانی در دنیای واقعی به دست آورده است. امروزه، رویکردهای NLP شامل ترکیبی از زبان‌شناسی کلاسیک و روش‌های آماری است.

ان ال پی نقش مهمی در فناوری و نحوه تعامل انسان با آن دارد. حال پردازش زبان طبیعی، در بسیاری از کاربردهای دنیای واقعی در هر دو فضای کسب‌کارها و مصرف‌کننده‌ها قابل استفاده است، از این کاربردها می‌توان به چت‌بات‌ها، امنیت سایبری، موتورهای جستجو و تجزیه و تحلیل داده‌های کلان اشاره نمود. بدون درنظر گرفتن چالش‌های آن‌، انتظار می رود NLP همچنان بخش مهمی از صنعت و زندگی روزمره آینده را تشکیل دهد.

همچنین با وجود تمام تردیدها، پردازش زبان طبیعی در زمینه تصویربرداری پزشکی نیز، پیشرفت‌های قابل توجهی داشته است. برای مثال رادیولوژیست‌ها از هوش مصنوعی و پردازش زبان طبیعی بهره می‌برند تا نتایج خود را مرور کرده و آن‌ها را با یکدیگر مقایسه کنند.
آموزش ​اصول و روش های داده کاوی Data Mining
فیلم آموزش ​اصول و روش های داده کاوی Data Mining
دیدن فیلم آموزشی

به این ترتیب در بخش انتهایی مطلب NLP چیست به نکات پایانی اشاره شده است.
نکات پایانی

پردازش زبان طبیعی یکی از امیدوار کننده‌ترین زمینه‌ها در هوش مصنوعی به حساب می‌آید، و در حال حاضر در بسیاری از برنامه‌هایی که ما به‌صورت روزانه از آن‌ها استفاده می‌کنیم، از چت‌بات‌ها گرفته تا موتورهای جستجو، کاربرد دارد. به لطف NLP، کسب و کارها برخی از فرآیندهای روزانه خود را خودکارسازی می‌کنند و از اغلب داده‌های بدون ساختار خود، شواهد عملیاتی‌ای دریافت می‌کنند، که می‌توان برای ایجاد بهبود رضایت مشتری و ارائه تجربیات بهتر آن‌ها از این شواهد استفاده کرد.

باوجود پیچیدگی‌های موجود در NLP،‌ این زمینه به لطف ابزارهای آنلاین روز به روز برای کاربران دست یافتنی‌تر می‌شانجام پروژه های
یادگیری ماشین(machine learning)
داده کاوی(data mining)
تحلیل و آنالیز داده ها
به کمک الگوریتم های
یادگیری با نظارت
رگرسیون(regression)
طبقه بندی(classification)
درخت تصمیم(decision tree) و ..
پردازش متن و زبان طبیعی(NLP)
تحلیل احساسات و ..
طبقه بندی داده های توییتر فارسی با روش BERT
پروژه، پروژه متن کاوی با پایتون / آبان ۱۴, ۱۴۰۱ / انجام پروژه داده کاوی، انجام پروژه داده کاوی با پایتون، انجام پروژه ماشین لرنینگ، انجام پروژه های داده کاوی، انجام پروژه های دانشجویی، انجام پروژه های دانشجویی پایتون، انجام پروژه های دانشجویی داده کاوی، انجام پروژه های متن کاوی، انجام پروژه های یادگیری ماشین، انجام پروژه یادگیری ماشین با پایتون، پردازش زبان طبیعی، پردازش زبان طبیعی nlp، پردازش زبان طبیعی با پایتون، پردازش زبان طبیعی فارسی، پردازش زبان طبیعی فارسی با پایتون، پردازش زبان طبیعی و متن کاوی، پردازش زبان فارسی با پایتون، پردازش زبان های طبیعی، پروژه داده کاوی، پروژه داده کاوی با پایتون، پروژه متن کاوی، تحلیل توییتر، تحلیل داده های توییتر، داده کاوی توییتر، داده کاوی در توییتر، داده های توییتر، شبکه عصبی long short term memory، شبکه عصبی lstm، شبکه عصبی lstm در پایتون، شبکه عصبی بازگشتی lstm، شبکه عصبی مصنوعی، شبکه های عصبی lstm، شبکه های عصبی lstm چیست، متن کاوی، متن کاوی با پایتون، مدل bert، مدل bert چیست، مدل برت، مدل زبانی bert، مراحل انجام پروژه داده کاوی، هزینه انجام پروژه داده کاوی

در این پروژه قصد داریم توییت های فارسی که در زمینه کرونا هستند را با کمک مدل طبقه بند BERT طبقه بندی کنیم. این مجموعه داده شامل 7268 توییت به زبان فارسی در مورد کرونا هستند که از قبل برچسب یا لیبل خورده اند. لیبل های ما در 8 دسته: ‘پرسش’, ‘ترس ‘, ‘تعجب’, ‘خنثی’, ‘خنده’, ‘خوشحالی’, ‘عصبانیت’, ‘غم’ دسته بندی شده اند. هدف از انجام  پروژه این است که بعد از ساخت مدل با روش برت (‌BERT) بتوانیم توییت های جدیدی که منتشر می شوند را بر اساس این 8 دسته تقیسم بندی کنیم.

چالش های ما در انجام این پروژه به دو بخش عمده تقیسم بندی شدند. اول اینکه نسبت لیبل های توییت ها یکسان نبودند. دومی استفاده از روش BERT فارسی بر روی توییت ها بود. پس از اتمام مراحل توانسیتم به دقت 80٪ برسیم که دقت خوبی بر روی این تعداد داده بود.

این پروژه با زبان پایتون با کتابخانه Tensoflow و در محیط گوگل کولب نوشته شده استآموزش پردازش زبان طبیعی Natural Language Processingپردازش زبان طبیعی چیست؟ در این مقاله قصد داریم این موضوع مهم از هوش مصنوعی را برایتان توضیح دهیم. با ما همراه باشید.

زبان‌های طبیعی یکی از زیرشاخه‌های بااهمیت در حوزهٔ گستردهٔ علوم رایانه، هوش مصنوعی است، که به تعامل بین کامپیوتر و زبان‌های (طبیعی) انسانی می‌پردازد؛ بنابراین پردازش زبان‌های طبیعی بر ارتباط انسان و رایانه، متمرکز است.

فهرست مطالب و عناوین

    درک زبان طبیعی انسان توسط ماشین
    مراحل و کاربردهای پردازش زبان طبیعی
    کاربرد پردازش زبان طبیعی چیست؟
    دیگر مزیت های NLP
    چالش‌های استفاده از پردازش زبان طبیعی
        دقت
        لحن صدا
        تغییرات زبانی
    مطالعه بیشتر

درک زبان طبیعی انسان توسط ماشین

چالش اصلی و عمده در این زمینه درک زبان طبیعی و ماشینی کردن فرایند درک و برداشت مفاهیم بیان‌شده با یک زبان طبیعیِ انسانی است. به تعریف دقیق‌تر، پردازش زبان‌های طبیعی عبارت است از استفاده از رایانه برای پردازش زبان گفتاری و زبان نوشتاری. بدین معنی که رایانه‌ها را قادر سازیم که گفتار یا نوشتار تولید شده در قالب و ساختار یک زبان طبیعی را تحلیل و درک نموده یا آن را تولید نمایند.
مراحل و کاربردهای پردازش زبان طبیعی

پردازش زبان طبیعی یک روند با چند مرحله است، این مراحل به ترتیب عبارتند از:

09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com


• یک انسان با یک دستگاه دیجیتالی صحبت می‌کند.
• یک دستگاه صوتی، صدای انسان را ضبط می‌کند.
• دستگاه دیجیتالی، صدای انسان را به متن تبدیل می‌کند.
• متن‌ها پردازش می‌شوند و پاسخ متنی مناسب در نظر گرفته می‌شود.
• پاسخ متنی به شکل صوتی در می‌آید.
• دستگاه فایل صوتی پاسخ را پخش ‌می‌کند.
این مطلب را نیز حتما بخوانید:  پیش پردازش داده ها در داده کاوی چیست؟
کاربرد پردازش زبان طبیعی چیست؟

حوزه NLP، کاربردهای فراوانی دارد. به طور خلاصه، می‌توان به کاربردهای زیر اشاره کرد:

۱. کاربرد در ترجمه‌ی ماشینی مانند: گوگل ترنسلیت
۲. کاربرد در ویرایشگرهای متن مانند Microsoft Word و Google Docs برای تصحیح غلط‌های گرامری، نوشتاری و ویرایشی
۳. پاسخ صوتی تعاملی (Interactive Voice Response یا IVR): از این مورد، در مراکز پاسخ‌گویی به مشتریان، برای پاسخ به سوالات متداول توسط ماشین، استفاده می‌شود.
۴. دستیارهای صوتی مانند کورتانا، سیری، الکسا و …
دیگر مزیت های NLP

• بهبود دقت و کارایی اسناد
• بینش‌های دقیقی را در اختیار می‌گذارد که به دلیل حجم بالای داده‌ها از طرق دیگر قابل دسترسی نیستند.
• سهولت استفاده برای تجزیه‌وتحلیل احساسات
• سازمان‌ها را قادر می‌سازد تا از چت‌بات‌ها برای تعامل بهتر با مشتریان استفاده کنند.
• دستیارهای شخصی مانند الکسا می‌توانند با استفاده از این امکان به زبان انسان‌ها تعامل کنند.
• توانایی ایجاد خودکار خلاصه‌ای قابل خواندن از یک متن طولانی و پیچیده
چالش‌های استفاده از پردازش زبان طبیعی

برخی چالش‌ها در پردازش زبان طبیعی وجود دارد که بیشتر آن‌ها در این واقعیت خلاصه می‌شود که زبان طبیعی همواره در حال تکامل است و همیشه تا حدی هم مبهم می‌باشد. این چالش ها عبارتند از:
دقت

کامپیوترها نیاز دارند تا انسان با آن‌ها به زبان برنامه‌نویسی که دقیق، صحیح و بدون ابهام باشد، یا از طریق دستورات صوتی صحبت کند. با این حال گفتار انسان همیشه دقیق نیست. اغلب مبهم است و بسته به بافت اجتماعی و منطقه می‌تواند با گویش خاص یا به طور عامیانه بیان شود.
این مطلب را نیز حتما بخوانید:  چگونه فریلنسر موسیقی شویم؟
لحن صدا

پردازش زبان طبیعی هم‌چنان در حال تکامل است. برای مثال تحلیل معنایی می‌تواند هم‌چنان چالش برانگیز باشد. هم‌چنین استفاده‌ی انتزاعی از زبان می‌تواند برای برنامه‌ها دشوار باشد. برای مثال NLP معنای طعنه را نمی‌داند یا بسته به تاکید بر روی هجای خاصی توسط گوینده معنا می‌تواند متفاوت باشد.

الگوریتم های NLP ممکن است چنین نکات ظریفی را تشخیص ندهند و همین موضوع استفاده از آن.ها را در چنین زمینه‌هایی چالش‌برانگیز ساخته است.
تغییرات زبانی

زبان و نحوه‌ی استفاده افراد از آن به سرعت در حال تغییر است. اگر چه قواعد زبانی مشخصی بر هر زبان حاکم است اما تغییرات زبان‌ها اجتناب‌ناپذیر است و همین موضوع سبب شده برخی ویژگی‌های منسوخ یا جدید زبان‌ها استفاده از الگوریتم‌های پردازش زبان طبیعی را با چالش مواجه سازد.

در این مقاله آموزشی در این باره که پردازش زبان طبی

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد